
您似乎是从中国境内访问我们的网站的。请导航至我们的优化版网站：amazonaws-china.com。

Create a Free

AWS Account

Search

Search

Posts by Product

Amazon Aurora

AWS Database

Migration Service

(DMS)

Amazon

DynamoDB

Amazon EC2

Amazon

ElastiCache

Amazon

Elasticsearch

Service

AWS IOT

Amazon Kinesis

AWS Lambda

Amazon RDS for

MySQL

Amazon RDS for

Oracle

AWS Database Blog

Amazon Aurora Under the Hood:
Reducing Costs Using Quorum Sets

by Anurag Gupta | on 21 AUG 2017 | in Amazon Aurora, Aurora, Database | Permalink | 

Comments |  Share

Anurag Gupta runs a number of AWS database services, including Amazon
Aurora, which he helped design. In this under the hood series, Anurag
discusses the design considerations and technology underpinning Aurora.

This post is the third in a four-part series discussing how Amazon Aurora uses

quorums. I hope the discussion is useful to you as you design your own

distributed systems. In this post, we discuss how to manage costs in a quorum

system.

The basic problem we’re tackling is that Aurora uses a quorum of six copies

spread across three Availability Zones (AZs), using four out of six copies to

write and three out of six copies for read/repair. In the first post of this series, I

discussed why six is the minimum number of copies necessary. In my second

post, I discussed how we can avoid the performance penalties of quorums for

both writes and reads. But it’s still a lot of copies of data, and that carries

costs. The low price for storage in Amazon Aurora might make us think that

there’s something unusual going on. There is.

To understand what we do, you have to go back to the basic definition of a

quorum. People generally talk about quorums as a set of like elements where

the write set represents a majority of elements, and the read and write sets

overlap. Although this is correct, it’s a simplification. The basic requirement is

only that the read and write sets are subsets of the entire quorum

membership set, for any legal write subset, at least one member is also

contained within any legal read subset, and that each write subset overlaps

with prior write subsets. That seems like the same thing, but it’s not.

The difference is that there is no requirement that quorum members be the

same as each other. We can construct quorum sets that mix and match

quorum subsets that have different latency, cost, or durability characteristics.

We can then use the rules of Boolean logic to create more sophisticated read

 

https://aws.amazon.com/optin/?country=CN&token=2454809b-a313-4c83-94a7-b8394a99ad55
http://aws.amazon.com/free/
https://aws.amazon.com/blogs/database/category/aurora/
https://aws.amazon.com/blogs/database/category/dms/
https://aws.amazon.com/blogs/database/category/dynamodb/
https://aws.amazon.com/blogs/database/category/ec2/
https://aws.amazon.com/blogs/database/category/elasticache/
https://aws.amazon.com/blogs/database/category/elasticsearch/
https://aws.amazon.com/blogs/database/category/iot/
https://aws.amazon.com/blogs/database/category/kinesis/
https://aws.amazon.com/blogs/database/category/lambda/
https://aws.amazon.com/blogs/database/category/rds-mysql/
https://aws.amazon.com/blogs/database/category/rds-oracle/
https://aws.amazon.com/blogs/database/
https://aws.amazon.com/blogs/database/category/database/amazon-aurora/
https://aws.amazon.com/blogs/database/category/aurora/
https://aws.amazon.com/blogs/database/category/database/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-reducing-costs-using-quorum-sets/
https://commenting.awsblogs.com/embed.html?disqus_shortname=aws-database-blog&disqus_identifier=1542&disqus_title=Amazon+Aurora+Under+the+Hood%3A+Reducing+Costs+Using+Quorum+Sets&disqus_url=https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-reducing-costs-using-quorum-sets/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-and-correlated-failure/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-reads-and-mutating-state/
https://aws.amazon.com/rds/aurora/pricing/
https://aws.amazon.com/?nc2=h_lg

Amazon RDS for

PostgreSQL

Amazon RDS for

SQL Server

AWS Schema

Conversion Tool

(SCT)

RSS Feed

 Subscribe to this

blog's feed

Recent Posts

Introducing

Amazon S3 and

Microsoft Azure

SQL Database

Connectors in AWS

Database Migration

Service

Viewing Amazon

Elasticsearch

Service Slow Logs

Replicating Amazon

EC2 or On-Premises

SQL Server to

Amazon RDS for

SQL Server

Querying on

Multiple Attributes

in Amazon

DynamoDB

Automating Cross-

Region and Cross-

Account Snapshot

Copies with the

Snapshot Tool for

Amazon Aurora

Automating SQL

Caching for Amazon

and write rules across the subsets to meet quorum membership requirements

for the full quorum. Let’s examine how we do this in Aurora to reduce costs.

Mixing full and tail segments of data

In Aurora, a database volume is made up of 10 GB segments of data. These

segments are replicated as a protection group, with six copies spread across

three AZs. But the six copies are not all the same. Half of the copies are full
segments, which contain both data pages and log records for that 10 GB

portion of the volume. The other half are tail segments, which contain only

log records. Each AZ contains one full segment and one tail segment.

Most databases have far more data block storage than redo log storage. Using

a mix of full and tail segments takes the physical storage requirements of

Aurora from six times the size of the database to a little bit more than three.

For a system that is designed to tolerate “AZ+1” failure cases, that’s the

minimum replication factor you can have.

The use of a mix of full segments and tail segments changes how we have to

construct our read and write sets. You can use the rules of Boolean logic to

ensure overlap across subsets and do it accurately even for arbitrarily complex

distribution of members. In our case, our write quorum is four out of six of any

segment OR three out of three of full segments. Our read quorum is then

three out of six of any segment AND one out of three of full segments. You

can see from the preceding that we have an overlap on all segments in the

quorums as well as an overlap on our full segments. By doing this, we can

write log records to the four out of six segments that we did previously. At

least one of these is a full segment and generates a data page. We read data

from full segments, using the optimization described in the last post to avoid

quorum reads, and instead reading from the one we know has the data we

need.

We use the read quorum as a way to rebuild failed segments and repair

impaired quorums. We also use it to rebuild our local state if we have to

restart the database write master node. If one of our tail segments fails, that’s

easy. We just repair it from any one of the three other copies we know was

written, just as we would in a simple quorum model.

If one of our full segments fails, it’s a bit more complicated. The one that

failed could have been the copy that we wrote to as part of our write. But in

that case, we know that we have another full segment, even if it hasn’t seen

the most recent write. We also have enough copies of the redo log record that

we can rebuild a full segment to be up to date. We also gossip between the

segments of a quorum to ensure that any missing writes are quickly filled in.

This reduces the probability we need to rebuild a full segment without adding

a performance burden to our write path.

Controlling costs with quorum sets of unlike members

Using quorum sets of unlike members is a good way to contain costs. There

are many options available. You might have quorums that combine the local

disk for low latency and remote disks for durability/availability. You might

 

https://aws.amazon.com/blogs/database/category/rds-postgresql/
https://aws.amazon.com/blogs/database/category/rds-sql-server/
https://aws.amazon.com/blogs/database/category/schema-conversion-tool-sct/
https://aws.amazon.com/blogs/database/feed/
https://aws.amazon.com/blogs/database/introducing-amazon-s3-and-microsoft-azure-sql-database-connectors-in-aws-database-migration-service/
https://aws.amazon.com/blogs/database/viewing-amazon-elasticsearch-service-slow-logs/
https://aws.amazon.com/blogs/database/replicating-amazon-ec2-or-on-premises-sql-server-to-amazon-rds-for-sql-server/
https://aws.amazon.com/blogs/database/querying-on-multiple-attributes-in-amazon-dynamodb/
https://aws.amazon.com/blogs/database/%C2%AD%C2%AD%C2%ADautomating-cross-region-cross-account-snapshot-copies-with-the-snapshot-tool-for-amazon-aurora/
https://aws.amazon.com/blogs/database/automating-sql-caching-for-amazon-elasticache-and-amazon-rds/
https://aws.amazon.com/?nc2=h_lg

ElastiCache and

Amazon RDS

Migrating a SQL

Server Database to

a MySQL-

Compatible

Database Engine

Using Amazon

Redshift for Fast

Analytical Reports

Testing Amazon

RDS for Oracle:

Plotting Latency

and IOPS for OLTP

I/O Pattern

Get Started with

Amazon

Elasticsearch

Service: Filter

Aggregations in

Kibana

Useful
Documentation Links

Cloud Databases

with AWS

Amazon RDS

AWS Database

Migration Service

Amazon

DynamoDB

Amazon

ElastiCache

Amazon Redshift

AWS Blogs

AWS Blog

AWS Big Data

have quorums that combine SSDs for performance and throughput and HDDs

to improve durability through low-cost replicas. You might have quorums that

combine data across AWS Regions to improve disaster recovery. There are a lot

of moving parts that you need to get right, but the payoffs can be significant.

For Aurora, the quorum set model described earlier lets us achieve storage

prices comparable to low-cost alternatives, while providing high durability,

availability, and performance.

So far in this series, we’ve discussed how to size quorums, how to avoid the

penalty of read and write amplification, and, with this post, how to control

costs. In the next post, we talk about how to manage quorum membership in

a large-scale distributed system in the face of failures without expensive

coordination.

If you have questions, leave a comment here or ping us at aurora-

pm@amazon.com.

Read Next: Amazon Aurora Under the Hood: Quorum Membership

 View

Comments

 

https://aws.amazon.com/blogs/database/automating-sql-caching-for-amazon-elasticache-and-amazon-rds/
https://aws.amazon.com/blogs/database/migrating-a-sql-server-database-to-a-mysql-compatible-database-engine/
https://aws.amazon.com/blogs/database/using-amazon-redshift-for-fast-analytical-reports/
https://aws.amazon.com/blogs/database/testing-amazon-rds-for-oracle-plotting-latency-and-iops-for-oltp-io-pattern/
https://aws.amazon.com/blogs/database/get-started-with-amazon-elasticsearch-service-filter-aggregations-in-kibana/
https://aws.amazon.com/products/databases/
https://aws.amazon.com/rds/
https://aws.amazon.com/dms/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/redshift/
http://aws.amazon.com/blogs/aws/
https://blogs.aws.amazon.com/bigdata/
mailto:aurora-pm@amazon.com
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-membership/
https://commenting.awsblogs.com/embed.html?disqus_shortname=aws-database-blog&disqus_identifier=1542&disqus_title=Amazon+Aurora+Under+the+Hood%3A+Reducing+Costs+Using+Quorum+Sets&disqus_url=https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-reducing-costs-using-quorum-sets/
https://aws.amazon.com/?nc2=h_lg

